Tuneable terahertz frequency-selective absorber based on a graphene/gold bilayer metasurface

A. D. Squires*, X. Gao, J. Du, Z. Han, D. H. Seo, J. S. Cooper, A. T. Murdock, S. K.H. Lam, T. Zhang, T. Van Der Laan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this work, a 0.2 THz electrically tuneable frequency-selective absorber is designed, fabricated, and experimentally tested. The tuneable absorber is achieved through a novel graphene/gold bilayer with a superimposed metamaterial structure. With this approach, a high-quality resonance is provided by the gold, with electrical tuneability from the graphene, in the bilayer. 16 dB of amplitude tuning at the designed 0.2 THz resonance is demonstrated, alongside 95% broadband modulation for only 6V applied bias. Terahertz time domain spectroscopy in reflection geometry is used to experimentally characterize the device, developed through an equivalent circuit model and three-dimensional full wave modelling and simulation in CST Microwave Studio. The design, fabrication and testing method are readily adaptable to other non-tuneable metal metasurfaces to produce a myriad of reconfigurable terahertz devices.

Original languageEnglish
Title of host publicationIRMMW-THz 2023 - 48th Conference on Infrared, Millimeter, and Terahertz Waves
PublisherIEEE Computer Society
ISBN (Electronic)9798350336603
DOIs
Publication statusPublished - 2023
Event48th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2023 - Montreal, Canada
Duration: 17 Sept 202322 Sept 2023

Publication series

NameInternational Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz
ISSN (Print)2162-2027
ISSN (Electronic)2162-2035

Conference

Conference48th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2023
Country/TerritoryCanada
CityMontreal
Period17/09/2322/09/23

Fingerprint

Dive into the research topics of 'Tuneable terahertz frequency-selective absorber based on a graphene/gold bilayer metasurface'. Together they form a unique fingerprint.

Cite this