TY - JOUR
T1 - Trigger control characteristics of fuze-recoil simulation system based on electromagnetic launcher
AU - Wang, Wenhao
AU - Bi, Shihua
AU - Xiang, Hongjun
AU - Zhan, Chao
AU - Yuan, Xichao
N1 - Publisher Copyright:
© 2017 Beijing Institute of Aerospace Information.
PY - 2017
Y1 - 2017
N2 - Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.
AB - Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.
KW - electromagnetic launcher
KW - fuze-recoil simulation
KW - trigger control
UR - http://www.scopus.com/inward/record.url?scp=85024500082&partnerID=8YFLogxK
U2 - 10.21629/JSEE.2017.03.16
DO - 10.21629/JSEE.2017.03.16
M3 - Article
AN - SCOPUS:85024500082
SN - 1671-1793
VL - 28
SP - 563
EP - 571
JO - Journal of Systems Engineering and Electronics
JF - Journal of Systems Engineering and Electronics
IS - 3
M1 - 7978029
ER -