Abstract
The problem of trajectory optimization of an unmanned aerial vehicle (UAV) for static target localization with biased bearing measurements is considered. The angular bias in sensor measurements is modeled as an additive constant in the observation model and jointly estimated with the position of the target. The necessary conditions for system observability of this estimation problem is first derived analytically with geometrical interpretations provided. The trajectory of UAV is designed based on the Fisher Information Matrix (FIM) considering physical constraints to enhance the system observability. Simulation results with Monte-Carlo runs are presented to demonstrate the improvement in target localization with biased measurements by UAV trajectory optimization.
Original language | English |
---|---|
Article number | 2250015 |
Journal | Guidance, Navigation and Control |
Volume | 2 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Sept 2022 |
Keywords
- Bearing-only measurement
- bias estimation
- target localization
- trajectory optimization