Toward hazard reduction of road vehicle after tire blowout: A driver steering assist control strategy

Lu Yang, Ming Yue, Hongzhi Zhang, Gang Xu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Tire blowout or failure of road vehicle on the expressway has greatly threaten the safety of the passengers and host vehicle as well as surrounding vehicles, and existing studies show that driver improper intervention after tire blowout is one of the principal causes that induce the serious traffic accidents. To such issue, this paper develops a hazard reduction oriented driver steering assist control strategy for road vehicle after tire blowout by introducing a hierarchical closed-loop control architecture for timely assisting driver. Within this strategy, a model predictive control based path tracking controller and an optimal preview acceleration driver model are separately developed for enhancing vehicle lateral stability after tire blowout based upon feedback vehicle attitude information in upper-level. As well, the parameterized driver activity is formulated considering his/her driving action and driving state, upon which a assist determination coefficient is further designed for adaptively allocating intervention level of assist controller. In lower-level, supported by reported burst tire mechanical characteristic and B-class vehicle model sourced from CarSim, a Simulink-CarSim co-simulation platform is constructed, in which tire vertical force redistributions after tire blowout are explicitly considered. In the end, simulations performed on the developed platform validate the effectiveness and efficiency of the assist steering control strategy and methods in improving directional stability and lateral dynamics performance of the vehicle after tire blowout.

Original languageEnglish
Title of host publicationProceedings of the 38th Chinese Control Conference, CCC 2019
EditorsMinyue Fu, Jian Sun
PublisherIEEE Computer Society
Pages6600-6605
Number of pages6
ISBN (Electronic)9789881563972
DOIs
Publication statusPublished - Jul 2019
Externally publishedYes
Event38th Chinese Control Conference, CCC 2019 - Guangzhou, China
Duration: 27 Jul 201930 Jul 2019

Publication series

NameChinese Control Conference, CCC
Volume2019-July
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference38th Chinese Control Conference, CCC 2019
Country/TerritoryChina
CityGuangzhou
Period27/07/1930/07/19

Keywords

  • Assist intervention level
  • Co-simulation platform
  • Driver steering assist control
  • Tire blowout

Fingerprint

Dive into the research topics of 'Toward hazard reduction of road vehicle after tire blowout: A driver steering assist control strategy'. Together they form a unique fingerprint.

Cite this