Abstract
Existing no-reference (NR) image quality assessment (IQA) metrics are still not convincing for evaluating the quality of the camera-captured images. Toward tackling this issue, we, in this article, establish a novel NR quality metric for quantifying the quality of the camera-captured images reliably. Since the image quality is hierarchically perceived from the low-level preliminary visual perception to the high-level semantic comprehension in the human brain, in our proposed metric, we characterize the image quality by exploiting both the low-level image properties and the high-level semantics of the image. Specifically, we extract a series of low-level features to characterize the fundamental image properties, including the brightness, saturation, contrast, noiseness, sharpness, and naturalness, which are highly indicative of the camera-captured image quality. Correspondingly, the high-level features are designed to characterize the semantics of the image. The low-level and high-level perceptual features play complementary roles in measuring the image quality. To infer the image quality, we employ the support vector regression (SVR) to map all the informative features to a single quality score. Thorough tests conducted on two standard camera-captured image databases demonstrate the effectiveness of the proposed quality metric in assessing the image quality and its superiority over the state-of-the-art NR quality metrics. The source code of the proposed metric for camera-captured images is released at https://github.com/YT2015?tab=repositories.
Original language | English |
---|---|
Pages (from-to) | 3651-3664 |
Number of pages | 14 |
Journal | IEEE Transactions on Cybernetics |
Volume | 53 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2023 |
Externally published | Yes |
Keywords
- Camera-captured image
- deep neural network (DNN)
- image quality assessment (IQA)
- no-reference (NR)/blind