Tian’s αm,kK^ -invariants on group compactifications

Yan Li*, Xiaohua Zhu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

In this paper, we compute Tian’s αm,kK×K-invariant on a polarized G-group compactification, where K denotes a maximal compact subgroup of a connected complex reductive group G. We prove that Tian’s conjecture (see Conjecture 1.1 below) is true for αm,kK×K-invariant on such manifolds when k= 1 , but it fails in general by producing counter-examples when k≥ 2.

Original languageEnglish
Pages (from-to)231-259
Number of pages29
JournalMathematische Zeitschrift
Volume298
Issue number1-2
DOIs
Publication statusPublished - Jun 2021

Keywords

  • Group compactifications
  • Polytopes
  • Toric manifolds
  • α(M) -invariant

Fingerprint

Dive into the research topics of 'Tian’s αm,kK^ -invariants on group compactifications'. Together they form a unique fingerprint.

Cite this