Abstract
The radar penetrating technique has aroused a keen interest in the research community, due to its superior abilities for through-the-wall indoor human motion monitoring. Micro-Doppler signatures in this situation play a significant role in recognition and classification for human activities. However, the live wire buried in the wall introduces additive clutters to the spectrograms. Such de-graded spectrograms drastically affect the performance of behind-the-wall human activity detection. In this paper, an ultra-wideband (UWB) radar system is utilized in the through-the-wall scenario to get the feature enhanced micro-Doppler signature called range-max time-frequency representation (R-max TFR). Then, a recently introduced Cycle-Consistent Generative Adversarial Network (Cycle GAN) is employed to realize the end-to-end de-wiring task. Cycle GAN can learn the mapping between spectrograms with and without the live wire effect. To minimize the wiring clutters, a loss function called identity loss is introduced in this work. Finally, the proposed de-wiring approach is evaluated through classification. The results show that the proposed Cycle GAN architecture outperforms other state-of-art de-wiring methods.
Original language | English |
---|---|
Article number | 124 |
Journal | Electronics (Switzerland) |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2022 |
Keywords
- Cycle GAN
- R-max TFR
- Spectrogram de-wiring
- Through-the-wall detection