TY - JOUR
T1 - Threshold condition for spray formation by Faraday instability
AU - Li, Yikai
AU - Umemura, Akira
N1 - Publisher Copyright:
© Cambridge University Press 2014.
PY - 2014/11/25
Y1 - 2014/11/25
N2 - A vertically vibrating liquid layer produces liquid ligaments that disintegrate to form a spray with drops of a controllable size. Previous experimental investigations of ultrasonic atomisation have shown that when such a spray forms, there exists a predominant surface-wave mode from which drops are generated with a mean diameter that follows Lang's equation. In this paper, we determined this predominant surface-wave mode physically and, by utilising the coupled level-set and volume-of-fluid method, we numerically studied the threshold condition for spray formation based on a cell model of the predominant surface wavelength that excludes the effects of the container walls. We defined a condition whereby the broken drop holds a zero area-averaged vertical velocity in the laboratory reference frame as the criterion for the formation of a spray. The results of our calculations indicated that the onset of a spray occurs in the subharmonic unstable region for a threshold dimensionless forcing strength βc = (ρlΔ03Ω2)/σ ∼ O(1), where ρl and σ denote the liquid density and surface tension coefficient, respectively, Δ0 is the forcing displacement amplitude and Ω is the forcing angular frequency. Spray formation due to the Faraday instability can be considered as a process whereby the liquid layer absorbs energy from the inertial force, and releases it by producing drops that leave the surface of the liquid layer. We demonstrated that for a deep liquid layer, the threshold condition for the formation of a spray is determined only by the forcing strength, and is independent of the initial conditions of the liquid surface.
AB - A vertically vibrating liquid layer produces liquid ligaments that disintegrate to form a spray with drops of a controllable size. Previous experimental investigations of ultrasonic atomisation have shown that when such a spray forms, there exists a predominant surface-wave mode from which drops are generated with a mean diameter that follows Lang's equation. In this paper, we determined this predominant surface-wave mode physically and, by utilising the coupled level-set and volume-of-fluid method, we numerically studied the threshold condition for spray formation based on a cell model of the predominant surface wavelength that excludes the effects of the container walls. We defined a condition whereby the broken drop holds a zero area-averaged vertical velocity in the laboratory reference frame as the criterion for the formation of a spray. The results of our calculations indicated that the onset of a spray occurs in the subharmonic unstable region for a threshold dimensionless forcing strength βc = (ρlΔ03Ω2)/σ ∼ O(1), where ρl and σ denote the liquid density and surface tension coefficient, respectively, Δ0 is the forcing displacement amplitude and Ω is the forcing angular frequency. Spray formation due to the Faraday instability can be considered as a process whereby the liquid layer absorbs energy from the inertial force, and releases it by producing drops that leave the surface of the liquid layer. We demonstrated that for a deep liquid layer, the threshold condition for the formation of a spray is determined only by the forcing strength, and is independent of the initial conditions of the liquid surface.
KW - Aerosols/atomization
KW - Faraday waves
KW - Gas/liquid flow
UR - http://www.scopus.com/inward/record.url?scp=84912070854&partnerID=8YFLogxK
U2 - 10.1017/jfm.2014.569
DO - 10.1017/jfm.2014.569
M3 - Review article
AN - SCOPUS:84912070854
SN - 0022-1120
VL - 759
SP - 73
EP - 103
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -