Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations

Fuping Wang, Lang Chen*, Deshen Geng, Junying Wu, Jianying Lu, Chen Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

103 Citations (Scopus)

Abstract

Hexanitrohexaazaisowurtzitane (CL-20) has a high detonation velocity and pressure, but its sensitivity is also high, which somewhat limits its applications. Therefore, it is important to understand the mechanism and characteristics of thermal decomposition of CL-20. In this study, a ϵ-CL-20 supercell was constructed and ReaxFF-lg reactive molecular dynamics simulations were performed to investigate thermal decomposition of ϵ-CL-20 at various temperatures (2000, 2500, 2750, 3000, 3250, and 3500 K). The mechanism of thermal decomposition of CL-20 was analyzed from the aspects of potential energy evolution, the primary reactions, and the intermediate and final product species. The effect of temperature on thermal decomposition of CL-20 is also discussed. The initial reaction path of thermal decomposition of CL-20 is N-NO2 cleavage to form NO2, followed by C-N cleavage, leading to the destruction of the cage structure. A small number of clusters appear in the early reactions and disappear at the end of the reactions. The initial reaction path of CL-20 decomposition is the same at different temperatures. However, as the temperature increases, the decomposition rate of CL-20 increases and the cage structure is destroyed earlier. The temperature greatly affects the rate constants of H2O and N2, but it has little effect on the rate constants of CO2 and H2.

Original languageEnglish
Pages (from-to)3971-3979
Number of pages9
JournalJournal of Physical Chemistry A
Volume122
Issue number16
DOIs
Publication statusPublished - 26 Apr 2018

Fingerprint

Dive into the research topics of 'Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations'. Together they form a unique fingerprint.

Cite this