The vehicle color recognition based on enhanced Yolov5 neural network

L. I. Yunchao, Jihui Wang*, Xiufang Li, Zhiqi Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Color features play a unique role in vehicle recognition. The color recognition algorithms based on deep learning neural networks are studied in this paper. A color recognition experiment is carried on to some typical deep learning neural networks, the result of the experiment proves that Yolov5 has faster training speed and higher accuracy for vehicle color recognition, so Yolov5 is chosen for the color recognition. The structure of yolov5 is optimized by adding C2f module replacing C3 module and adjusting the parameters of HSV color space when it is applied to identify 8 typical vehicle colors using BIT Vehicles data set. The modified Yolov5 make the accuracy of vehicle color recognition improved effectively to the complex color vehicles and part covered vehicles comparing with original yolov5 network.

Original languageEnglish
Title of host publicationOptoelectronic Imaging and Multimedia Technology X
EditorsQionghai Dai, Tsutomu Shimura, Zhenrong Zheng
PublisherSPIE
ISBN (Electronic)9781510667839
DOIs
Publication statusPublished - 2023
EventOptoelectronic Imaging and Multimedia Technology X 2023 - Beijing, China
Duration: 15 Oct 202316 Oct 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12767
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptoelectronic Imaging and Multimedia Technology X 2023
Country/TerritoryChina
CityBeijing
Period15/10/2316/10/23

Keywords

  • Yolov5 neural network
  • color recognition
  • deep learning
  • vehicle detection

Fingerprint

Dive into the research topics of 'The vehicle color recognition based on enhanced Yolov5 neural network'. Together they form a unique fingerprint.

Cite this