Abstract
The terahertz scattering characteristics of metallic and dielectric rough targets is important for the investigation of the terahertz radar targets properties. According to the stationary phase theory and scalar approximation, if the radius of curvature at any point of the surface is much larger than the incident wavelength, and the wavelength is also much longer than the surface height function and Root-Mean-Square (RMS) surface slope, the coherent and incoherent scattering Radar Cross Section (RCS) of rough metallic and dielectric targets can be obtained. Based on the stationary phase approximation, the coherent RCS of rough conductors, smooth dielectric targets and rough dielectric targets can be easily deputed. The scattering characteristics of electrically large smooth Al and painted spheres are investigated in this paper, and the calculated RCS are verified by Mie scattering theory, the error is less than 0.1 dBm2. Based on lambert theory, it is demonstrated that the incoherent RCS is analyzed with better precision if the rough surfaces are divided into much more facets. In this paper, the coherent and incoherent scattering of rough Al and painted spheres are numerically observed, and the effects of surface roughness and materials are analyzed. The conclusions provide theoretical foundation for the terahertz scattering characteristics of electrically large rough targets.
Original language | English |
---|---|
Pages (from-to) | 83-90 |
Number of pages | 8 |
Journal | Journal of Radars |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 28 Feb 2018 |
Externally published | Yes |
Keywords
- Coherent
- Electrically large
- Incoherent
- Terahertz