The removal of ocular artifactsfrom EEG signals: An adaptive modeling technique for portable applications

Yang Li, Bin Hu, Qinglin Zhao, Hong Peng, Yujun Shi, Yunpeng Li, Philip Moore

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Modeling and prediction of Electroencephalogram (EEG) signals is very important for Portable applications; EEG signals are however widely regarded as being chaotic in nature. An adaptive modeling technique that combines Discrete Wavelet Transformation (DWT) to predict contaminated EEG signals for removal of ocular artifacts (OAs) from EEG records is proposed as an effective a data processing tool for Interventions in Mental Illness Based on Bio-feedback. The proposed method is well suited for use in portable environments where constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. Using simulated and measured data the accuracy of the proposed model is compared to the accuracy of other pre-existing methods based on Wavelet Packet Transform (WPT) and independent component analysis (ICA) using DWT and adaptive noise cancellation (ANC) for Portable applications. The results show that the our new model not only demonstrates an improved performance with respect to the recovery of true EEG signals, achieves improved computational speed, and demonstrates better tracking performance.

Original languageEnglish
Title of host publicationProceedings - 2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013
Pages222-228
Number of pages7
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013 - Shanghai, China
Duration: 18 Dec 201321 Dec 2013

Publication series

NameProceedings - 2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013

Conference

Conference2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013
Country/TerritoryChina
CityShanghai
Period18/12/1321/12/13

Keywords

  • Adaptive model
  • DWT
  • EEG
  • Portable Applications
  • ocular artifacts

Fingerprint

Dive into the research topics of 'The removal of ocular artifactsfrom EEG signals: An adaptive modeling technique for portable applications'. Together they form a unique fingerprint.

Cite this