The Periplectic Brauer Algebra III: The Deligne Category

Kevin Coulembier*, Michael Ehrig

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 7
  • Captures
    • Readers: 2
see details

Abstract

We construct a faithful categorical representation of an infinite Temperley-Lieb algebra on the periplectic analogue of Deligne’s universal monoidal category. We use the corresponding combinatorics to classify thick tensor ideals in this periplectic Deligne category. This allows us to determine the objects in the kernel of the monoidal functor going to the module category of the periplectic Lie supergroup. We use this to classify indecomposable direct summands in the tensor powers of the natural representation, determine which are projective and determine their simple top.

Original languageEnglish
Pages (from-to)993-1027
Number of pages35
JournalAlgebras and Representation Theory
Volume24
Issue number4
DOIs
Publication statusPublished - Aug 2021

Keywords

  • Categorification
  • Deligne category
  • Diagram algebras
  • Fock space
  • Periplectic Lie superalgebra
  • Temperley-Lieb algebra
  • Thick tensor ideals

Fingerprint

Dive into the research topics of 'The Periplectic Brauer Algebra III: The Deligne Category'. Together they form a unique fingerprint.

Cite this

Coulembier, K., & Ehrig, M. (2021). The Periplectic Brauer Algebra III: The Deligne Category. Algebras and Representation Theory, 24(4), 993-1027. https://doi.org/10.1007/s10468-020-09976-8