Abstract
Locust Locusta migratoria exhibits remarkable aerial performances, relying predominantly on its hind wings that generate most of lift and thrust for flight. The mechanical properties of the cross-veins determine the deformation of the hind wing, which greatly affect the aerodynamic performance of flapping flight. However, whether the mechanical behaviours of the locust cross-veins change with loading rate is still unknown. In this study, cross-veins in four physiological regions (anterior–medial, anterior–lateral, posterior–medial and posterior–lateral) of the hind wing from adult locusts were investigated using uniaxial tensile test, stress relaxation test and fluorescence microscopy. It was found that the cross-veins were a type of viscoelastic material (including rate-independent elastic modulus and obvious stress relaxation). The cross-veins in the two anterior regions of the hind wing had significantly higher elastic moduli and higher ultimate tensile stress than those of its two posterior regions. This difference might be attributed to different resilin distribution patterns in the cross-veins. These findings furnish new insights into the mechanical characteristics of the locust cross-veins, which might deepen our understanding of the aerodynamic mechanisms of locust flapping flight.
Original language | English |
---|---|
Article number | 20230068 |
Journal | Interface Focus |
Volume | 14 |
Issue number | 2 |
DOIs | |
Publication status | Published - 12 Apr 2024 |
Keywords
- cross-vein
- heterogeneous distribution
- locust wing
- rate-independent
- stress relaxation properties