The lifting scheme for wavelet Bi-frames: Theory, structure, and algorithm

Xiaoyuan Yang*, Yan Shi, Liuhe Chen, Zongfeng Quan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

In this paper, we present the lifting scheme of wavelet bi-frames along with theory analysis, structure, and algorithm. We show how any wavelet bi-frame can be decomposed into a finite sequence of simple filtering steps. This decomposition corresponds to a factorization of a polyphase matrix of a wavelet bi-frame. Based on this concept, we present a new idea for constructing wavelet bi-frames. For the construction of symmetric bi-frames, we use generalized Bernstein basis functions, which enable us to design symmetric prediction and update filters. The construction allows more efficient implementation and provides tools for custom design of wavelet bi-frames. By combining the different designed filters for the prediction and update steps, we can devise practically unlimited forms of wavelet bi-frames. Moreover, we present an algorithm of increasing the number of vanishing moments of bi-framelets to arbitrary order via the presented lifting scheme, which adopts an iterative algorithm and ensures the shortest lifting scheme. Several construction examples are given to illustrate the results.

Original languageEnglish
Article number5356194
Pages (from-to)612-624
Number of pages13
JournalIEEE Transactions on Image Processing
Volume19
Issue number3
DOIs
Publication statusPublished - Mar 2010
Externally publishedYes

Keywords

  • Generalized Bernstein bases
  • Lifting scheme
  • Symmetric wavelet bi-frames
  • Vanishing moments
  • Wavelet bi-frames

Fingerprint

Dive into the research topics of 'The lifting scheme for wavelet Bi-frames: Theory, structure, and algorithm'. Together they form a unique fingerprint.

Cite this