The Index of a Local Boundary Value Problem for Strongly Callias-Type Operators

Maxim Braverman*, Pengshuai Shi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 5
  • Captures
    • Readers: 3
see details

Abstract

We consider a complete Riemannian manifold M whose boundary is a disjoint union of finitely many complete connected Riemannian manifolds. We compute the index of a local boundary value problem for a strongly Callias-type operator on M. Our result extends an index theorem of D. Freed to non-compact manifolds, thus providing a new insight on the Hořava–Witten anomaly.

Original languageEnglish
Pages (from-to)79-96
Number of pages18
JournalArnold Mathematical Journal
Volume5
Issue number1
DOIs
Publication statusPublished - 1 Mar 2019
Externally publishedYes

Keywords

  • Boundary value problem
  • Callias
  • Chiral anomaly
  • Cobordism
  • Index

Fingerprint

Dive into the research topics of 'The Index of a Local Boundary Value Problem for Strongly Callias-Type Operators'. Together they form a unique fingerprint.

Cite this

Braverman, M., & Shi, P. (2019). The Index of a Local Boundary Value Problem for Strongly Callias-Type Operators. Arnold Mathematical Journal, 5(1), 79-96. https://doi.org/10.1007/s40598-019-00110-1