The effect of chemical reactivity on the formation of gaseous oblique detonation waves

Chian Yan, Hong Hui Teng, Xiao Cheng Mi, Hoi Dick Ng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

High-fidelity numerical simulations using a Graphics Processing Unit (GPU)-based solver are performed to investigate oblique detonations induced by a two-dimensional, semi-infinite wedge using an idealized model with the reactive Euler equations coupled with one-step Arrhenius or two-step induction-reaction kinetics. The novelty of this work lies in the analysis of chemical reaction sensitivity (characterized by the activation energy Ea and heat release rate constant kR) on the two types of oblique detonation formation, namely, the abrupt onset with a multi-wave point and a smooth transition with a curved shock. Scenarios with various inflow Mach number regimes M0 and wedge angles θ are considered. The conditions for these two formation types are described quantitatively by the obtained boundary curves in M0-Ea and M0-kR spaces. At a low M0, the critical Ea,cr and kR,cr for the transition are essentially independent of the wedge angle. At a high flow Mach number regime with M0 above approximately 9.0, the boundary curves for the three wedge angles deviate substantially from each other. The overdrive effect induced by the wedge becomes the dominant factor on the transition type. In the limit of large Ea, the flow in the vicinity of the initiation region exhibits more complex features. The effects of the features on the unstable oblique detonation surface are discussed.

Original languageEnglish
Article number62
JournalAerospace
Volume6
Issue number6
DOIs
Publication statusPublished - 1 Jun 2019

Keywords

  • CFD
  • Chemical kinetics
  • Oblique detonation
  • Propulsion
  • Supersonic combustion

Fingerprint

Dive into the research topics of 'The effect of chemical reactivity on the formation of gaseous oblique detonation waves'. Together they form a unique fingerprint.

Cite this