The design of EBG for enhancing the isolation in dual-band microstrip antennas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

The problem of surface wave coupling between microstrip antennas especially multi-band antennas is widely studied by researchers in recent years. In this paper, a novel dual-bandgap electromagnetic bandgap (EBG) structure is proposed, which is used to improve the isolation between dual-band microstrip antennas. On the base of mushroom-like electromagnetic bandgap structure, this EBG structure is designed to suppress the surface wave, then improve the isolation between the microstrip antennas. This dual-bandgap EBG structure consists of an internal small patch, an external ring patch and two metallized vias. An equivalent LC circuit model for this EBG structure is proposed: the first LC resonance is formed by the internal patch, the vias and external patch, while the second is constructed by the internal patch, the vias, the external patch and the adjacent external patch. To analyze the dual-bandgap properties of the above equivalent circuit model, the dispersion diagram of the EBG structure based on the rectangular (irreducible) Brillouin zone in HFSS is given in this paper. In order to verify the effectiveness of this new dual-bandgap EBG structure, a dual-band microstrip patch antenna is also designed, which obtains a dual-frequency characteristic by surface slotting. Finally, the dual-bandgap EBG structure is placed between two identical dual-frequency microstrip antennas on the same layer, sharing a floor. The S21 before and after adding the EBG structure are compared. The results show that the addition of this new EBG structure can reduced the S21 of lower band by 3 dB and upper band by 9 dB, which effectively suppresses the surface waves and increases the isolation of the antennas in the two bands.

Original languageEnglish
Title of host publication2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2207-2212
Number of pages6
ISBN (Electronic)9781728153049
DOIs
Publication statusPublished - Dec 2019
Event2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Xiamen, China
Duration: 17 Dec 201920 Dec 2019

Publication series

Name2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Proceedings

Conference

Conference2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019
Country/TerritoryChina
CityXiamen
Period17/12/1920/12/19

Fingerprint

Dive into the research topics of 'The design of EBG for enhancing the isolation in dual-band microstrip antennas'. Together they form a unique fingerprint.

Cite this