The butterfly effect in bisfluorenylidene-based dihydroacenes: Aggregation induced emission and spin switching

Xiaodong Yin, Jonathan Z. Low, Kealan J. Fallon, Daniel W. Paley, Luis M. Campos*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Linear acenes are a well-studied class of polycyclic aromatic hydrocarbons and their established physical properties have led to their widespread application across the field of organic electronics. However, their quinoidal forms-dihydroacenes-are much less explored and exhibit vastly different photophysical and electronic properties due to their non-planar, cross-conjugated nature. In this work, we present a series of difluorenylidene dihydroacenes which exhibit a butterfly-like structure with a quinoidal skeleton, resulting in comparatively higher optical gaps and lower redox activities than those of their planar analogs. We found that these compounds exhibit aggregation induced emission (AIE), activated through restriction of the "flapping" vibrational mode of the molecules in the solid state. Furthermore, anthracene-containing dihydroacenes exhibit thermally activated ground-state spin switching as evidenced by planarization of the acene core and diradical activity recorded by EPR. These two characteristics in this relatively unexplored class of materials provide new insights for the design of multifunctional materials.

Original languageEnglish
Pages (from-to)10733-10739
Number of pages7
JournalChemical Science
Volume10
Issue number46
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'The butterfly effect in bisfluorenylidene-based dihydroacenes: Aggregation induced emission and spin switching'. Together they form a unique fingerprint.

Cite this