TY - GEN
T1 - The active disturbance rejection control for nonlinear systems using time-varying-gain
AU - Guo, Bao Zhu
AU - Yao, Cui Zhen
AU - Zhao, Zhi Liuang
PY - 2013
Y1 - 2013
N2 - The active disturbance rejection control, as a new control strategy in dealing with the large uncertainties, has been developed rapidly in the last two decades. Basically, the active disturbance rejection control is composed of three main parts: the differential tracking; the extended state observer; and the extended observer-based feedback control. In these three parts, the extended state observer plays a crucial role toward the active disturbance rejection control. The most of the extended state observers are based on the constant high gain parameter tuning which results inherently in the peaking problem near the initial time, and at most the attenuation effect for the uncertainty. In this paper, a time-varying-gain extended state observer is proposed for a class of nonlinear systems, which is shown to reject completely the disturbance and to avoid effectively the peaking phenomena by the proper choice of the gain function. The convergence of the extended state observer for the open-loop system is independently proved. The convergence for the closed-loop system which is based on the extended state observer feedback is also presented. Examples and numerical simulations are used to illustrate the convergence and the peaking diminution.
AB - The active disturbance rejection control, as a new control strategy in dealing with the large uncertainties, has been developed rapidly in the last two decades. Basically, the active disturbance rejection control is composed of three main parts: the differential tracking; the extended state observer; and the extended observer-based feedback control. In these three parts, the extended state observer plays a crucial role toward the active disturbance rejection control. The most of the extended state observers are based on the constant high gain parameter tuning which results inherently in the peaking problem near the initial time, and at most the attenuation effect for the uncertainty. In this paper, a time-varying-gain extended state observer is proposed for a class of nonlinear systems, which is shown to reject completely the disturbance and to avoid effectively the peaking phenomena by the proper choice of the gain function. The convergence of the extended state observer for the open-loop system is independently proved. The convergence for the closed-loop system which is based on the extended state observer feedback is also presented. Examples and numerical simulations are used to illustrate the convergence and the peaking diminution.
UR - http://www.scopus.com/inward/record.url?scp=84886569715&partnerID=8YFLogxK
U2 - 10.1109/ASCC.2013.6605997
DO - 10.1109/ASCC.2013.6605997
M3 - Conference contribution
AN - SCOPUS:84886569715
SN - 9781467357692
T3 - 2013 9th Asian Control Conference, ASCC 2013
BT - 2013 9th Asian Control Conference, ASCC 2013
T2 - 2013 9th Asian Control Conference, ASCC 2013
Y2 - 23 June 2013 through 26 June 2013
ER -