Abstract
We report the room temperature template synthesis of CuInS2 nanocrystals through incorporation of Cu+ cations into In2S3 nanoplates whose chemical composition has been controlled by varying the amount of copper ions in the reaction mixture. As a result, bandgaps of the resultant CuInS2 nanoplates can be tuned from 1.45 to 1.19 eV with [Cu]/[In] molar ratios increasing from 0.7 to 2.9, which was demonstrated by the cyclic voltammetry. We explored the use of CuInS2 nanocrystals as potential counter electrodes in dye-sensitized solar cells, and a power conversion efficiency of 6.83% was achieved without selenization and ligand exchange. The value is comparable with the performance of a control device using Pt as a counter electrode (power conversion efficiency: 7.08%) under the same device architecture.
Original language | English |
---|---|
Pages (from-to) | 5949-5956 |
Number of pages | 8 |
Journal | Chemistry of Materials |
Volume | 27 |
Issue number | 17 |
DOIs | |
Publication status | Published - 8 Sept 2015 |