Temperature Dependence of Excitonic and Biexcitonic Decay Rates in Colloidal Nanoplatelets by Time-Gated Photon Correlation

Elad Benjamin, Venkata Jayasurya Yallapragada*, Daniel Amgar, Gaoling Yang, Ron Tenne, Dan Oron*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Excitons in colloidal semiconductor nanoplatelets (NPLs) are weakly confined in the lateral dimensions. This results in significantly smaller Auger rates and, consequently, larger biexciton quantum yields, when compared to spherical quantum dots (QDs). Here we report a study of the temperature dependence of the biexciton Auger rate in individual CdSe/CdS core-shell NPLs, through the measurement of time-gated second-order photon correlations in the photoluminescence. We also utilize this method to directly estimate the single-exciton radiative rate. We find that whereas the radiative lifetime of NPLs increases with temperature, the Auger lifetime is almost temperature-independent. Our findings suggest that Auger recombination in NPLs is qualitatively similar to that of semiconductor quantum wells. Time-gated photon correlation measurements offer the unique ability to study multiphoton emission events, while excluding effects of competing fast processes, and can provide significant insight into the photophysics of a variety of nanocrystal multiphoton emitters.

Original languageEnglish
Pages (from-to)6513-6518
Number of pages6
JournalJournal of Physical Chemistry Letters
Volume11
Issue number16
DOIs
Publication statusPublished - 20 Aug 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Temperature Dependence of Excitonic and Biexcitonic Decay Rates in Colloidal Nanoplatelets by Time-Gated Photon Correlation'. Together they form a unique fingerprint.

Cite this