TY - GEN
T1 - Target-Aware Object Discovery and Association for Unsupervised Video Multi-Object Segmentation
AU - Zhou, Tianfei
AU - Li, Jianwu
AU - Li, Xueyi
AU - Shao, Ling
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - This paper addresses the task of unsupervised video multi-object segmentation. Current approaches follow a two-stage paradigm: 1) detect object proposals using pre-trained Mask R-CNN, and 2) conduct generic feature matching for temporal association using re-identification techniques. However, the generic features, widely used in both stages, are not reliable for characterizing unseen objects, leading to poor generalization. To address this, we introduce a novel approach for more accurate and efficient spatio-temporal segmentation. In particular, to address instance discrimination, we propose to combine foreground region estimation and instance grouping together in one network, and additionally introduce temporal guidance for segmenting each frame, enabling more accurate object discovery. For temporal association, we complement current video object segmentation architectures with a discriminative appearance model, capable of capturing more fine-grained target-specific information. Given object proposals from the instance discrimination network, three essential strategies are adopted to achieve accurate segmentation: 1) target-specific tracking using a memory-augmented appearance model; 2) target-agnostic verification to trace possible tracklets for the proposal; 3) adaptive memory updating using the verified segments. We evaluate the proposed approach on DAVIS17 and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
AB - This paper addresses the task of unsupervised video multi-object segmentation. Current approaches follow a two-stage paradigm: 1) detect object proposals using pre-trained Mask R-CNN, and 2) conduct generic feature matching for temporal association using re-identification techniques. However, the generic features, widely used in both stages, are not reliable for characterizing unseen objects, leading to poor generalization. To address this, we introduce a novel approach for more accurate and efficient spatio-temporal segmentation. In particular, to address instance discrimination, we propose to combine foreground region estimation and instance grouping together in one network, and additionally introduce temporal guidance for segmenting each frame, enabling more accurate object discovery. For temporal association, we complement current video object segmentation architectures with a discriminative appearance model, capable of capturing more fine-grained target-specific information. Given object proposals from the instance discrimination network, three essential strategies are adopted to achieve accurate segmentation: 1) target-specific tracking using a memory-augmented appearance model; 2) target-agnostic verification to trace possible tracklets for the proposal; 3) adaptive memory updating using the verified segments. We evaluate the proposed approach on DAVIS17 and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
UR - http://www.scopus.com/inward/record.url?scp=85111221011&partnerID=8YFLogxK
U2 - 10.1109/CVPR46437.2021.00691
DO - 10.1109/CVPR46437.2021.00691
M3 - Conference contribution
AN - SCOPUS:85111221011
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 6981
EP - 6990
BT - Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PB - IEEE Computer Society
T2 - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Y2 - 19 June 2021 through 25 June 2021
ER -