Abstract
Lithium oxygen batteries have attracted much attention due to the high theoretical energy density. However, they suffer a large overpotential during oxygen evolution process and thus catalysts play a vital role in the reaction. Here, we systematically explored the influence of Pt-based nanoparticle catalysts on the discharge product Li2O2. Because of the superior electrical conductivity and the strong binding with oxygen, Pt-based nanoparticles serve as active sites which are favorable for the growth of toroidal Li2O2. We also found that the content and composition of Pt-based nanoparticle catalysts exert a significant influence on the electrochemical performance of lithium oxygen batteries. The discharge products are composed of crystalline Li2O2 and oxygen-rich LiO2 characterized by high-energy X-ray diffraction and Raman. Atomic force microscopy further provides detailed information of the particle size and surface roughness. The loading of Pt catalysts determines the phase and size of Li2O2 on the discharged electrode surface. This study will be beneficial for the optimization of Pt-based catalysts used in non-aqueous lithium oxygen batteries.
Original language | English |
---|---|
Pages (from-to) | 96-102 |
Number of pages | 7 |
Journal | Journal of Power Sources |
Volume | 332 |
DOIs | |
Publication status | Published - 15 Nov 2016 |
Keywords
- Atomic force microscopy
- Discharge products LiO
- Lithium-O batteries
- Pt-based catalysts
- Ru