Abstract
Phase engineering of nanomaterials (PEN) offers a promising route to rationally tune the physicochemical properties of nanomaterials and further enhance their performance in various applications. However, it remains a great challenge to construct well-defined crystalline@amorphous core–shell heterostructured nanomaterials with the same chemical components. Herein, the synthesis of binary (Pd-P) crystalline@amorphous heterostructured nanoplates using Cu3− χP nanoplates as templates, via cation exchange, is reported. The obtained nanoplate possesses a crystalline core and an amorphous shell with the same elemental components, referred to as c-Pd-P@a-Pd-P. Moreover, the obtained c-Pd-P@a-Pd-P nanoplates can serve as templates to be further alloyed with Ni, forming ternary (Pd-Ni-P) crystalline@amorphous heterostructured nanoplates, referred to as c-Pd-Ni-P@a-Pd-Ni-P. The atomic content of Ni in the c-Pd-Ni-P@a-Pd-Ni-P nanoplates can be tuned in the range from 9.47 to 38.61 at%. When used as a catalyst, the c-Pd-Ni-P@a-Pd-Ni-P nanoplates with 9.47 at% Ni exhibit excellent electrocatalytic activity toward ethanol oxidation, showing a high mass current density up to 3.05 A mgPd −1, which is 4.5 times that of the commercial Pd/C catalyst (0.68 A mgPd −1).
Original language | English |
---|---|
Article number | 2000482 |
Journal | Advanced Materials |
Volume | 32 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 May 2020 |
Externally published | Yes |
Keywords
- amorphous
- ethanol oxidation reaction
- heterostructures
- nanoplates