Synchronous stabilization of Li-S electrodes by a 1T MoS2@AAO functional interlayer

Binchao Shi, Yue Wang, Ertai Liu, Shilin Mei*, Chang Jiang Yao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The fast capacity decay and limited cycling life are the two main issues that hinder the practical applications of lithium-sulfur batteries. They are mainly caused by the shuttle effect of polysulfide species and the growth of big lithium dendrites occurring separately on the cathode and anode sides. To simultaneously tackle these problems, we explore a multifunctional interlayer integrating the aligned nanochannel structure of an anodic aluminum oxide (AAO) membrane with porous 1T MoS2 nanotubes (namely MoS2@AAO). Benefiting from the high electronic conductivity, sulfiphilic and lithiophilic properties of 1T MoS2, and the positive surface plus low tortuosity of the straight channels of AAO, the designed interlayer not only guarantees rapid ion/electron transfer and efficacious suppression of the polysulfide shuttle, but also achieves uniform and stable lithium deposition during cycling. Consequently, the MoS2@AAO interlayer exhibits a high capacity retention of 99.6% at 0.2C after 500 cycles and 90.6% at 1.0C after 1000 cycles. The prototype cathode with a sulfur loading of 5 mg cm−2 was also investigated, which exhibited over 96% retention of the initial discharge capacity at 0.1C after 50 cycles. This work provides a new solution for simultaneously stabilizing both the lithium anode and sulfur cathode via an integrating approach.

Original languageEnglish
Pages (from-to)2760-2770
Number of pages11
JournalJournal of Materials Chemistry A
Volume12
Issue number5
DOIs
Publication statusPublished - 20 Dec 2023

Fingerprint

Dive into the research topics of 'Synchronous stabilization of Li-S electrodes by a 1T MoS2@AAO functional interlayer'. Together they form a unique fingerprint.

Cite this