TY - GEN
T1 - Sustainable Federated Learning with Long-term Online VCG Auction Mechanism
AU - Wu, Leijie
AU - Guo, Song
AU - Liu, Yi
AU - Hong, Zicong
AU - Zhan, Yufeng
AU - Xu, Wenchao
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Federated learning (FL) clients may be reluctant to participate in the energy-consuming FL unless they are incentivized. Existing incentive mechanisms seldom consider the economic properties, e.g., social welfare, individual rationality and incentive compatibility, which significantly limits the sustainability of FL to attract more clients. The Vickrey-Clarke-Groves (VCG) auction is an ideal mechanism for simultaneously guaranteeing all crucial economic properties to maximize social welfare. However, VCG auction cannot be applied directly to FL scenarios due to the following challenges: 1) It requires precise analytical derivation of the optimal strategy, which is unavailable due to the inherent model-unknown and privacy-sensitive characteristics of FL. 2) Current auction modeling decomposes the entire process into multiple independent rounds and solves them one-by-one, which breaks the successive correlation between rounds in the long-term training process of FL. To overcome these challenges, this paper presents a long-term online VCG auction mechanism for FL that employs an experience-driven deep reinforcement learning algorithm to obtain the optimal strategy. Besides, we extend long-term forms of the crucial economic properties for the successive FL process. Furthermore, knowledge transfer is applied to reduce the excessive training overhead arising from the VCG payment rules. By exploiting the environmental similarity among sub-auctions, we develop the strategy sharing to significantly cut the training time by half. Finally, we theoretically prove the extended economic properties and conduct extensive experiments on multiple real-world datasets. Compared with state-of-the-art approaches, the long-term social welfare of FL increases by 36% with a 37% reduction in payment.
AB - Federated learning (FL) clients may be reluctant to participate in the energy-consuming FL unless they are incentivized. Existing incentive mechanisms seldom consider the economic properties, e.g., social welfare, individual rationality and incentive compatibility, which significantly limits the sustainability of FL to attract more clients. The Vickrey-Clarke-Groves (VCG) auction is an ideal mechanism for simultaneously guaranteeing all crucial economic properties to maximize social welfare. However, VCG auction cannot be applied directly to FL scenarios due to the following challenges: 1) It requires precise analytical derivation of the optimal strategy, which is unavailable due to the inherent model-unknown and privacy-sensitive characteristics of FL. 2) Current auction modeling decomposes the entire process into multiple independent rounds and solves them one-by-one, which breaks the successive correlation between rounds in the long-term training process of FL. To overcome these challenges, this paper presents a long-term online VCG auction mechanism for FL that employs an experience-driven deep reinforcement learning algorithm to obtain the optimal strategy. Besides, we extend long-term forms of the crucial economic properties for the successive FL process. Furthermore, knowledge transfer is applied to reduce the excessive training overhead arising from the VCG payment rules. By exploiting the environmental similarity among sub-auctions, we develop the strategy sharing to significantly cut the training time by half. Finally, we theoretically prove the extended economic properties and conduct extensive experiments on multiple real-world datasets. Compared with state-of-the-art approaches, the long-term social welfare of FL increases by 36% with a 37% reduction in payment.
KW - Auction Mechanism
KW - Deep Reinforcement Learning
KW - Federated Learning
KW - Incentive Mechanism
UR - http://www.scopus.com/inward/record.url?scp=85140874607&partnerID=8YFLogxK
U2 - 10.1109/ICDCS54860.2022.00091
DO - 10.1109/ICDCS54860.2022.00091
M3 - Conference contribution
AN - SCOPUS:85140874607
T3 - Proceedings - International Conference on Distributed Computing Systems
SP - 895
EP - 905
BT - Proceedings - 2022 IEEE 42nd International Conference on Distributed Computing Systems, ICDCS 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022
Y2 - 10 July 2022 through 13 July 2022
ER -