Abstract
Using full solar spectrum for energy conversion and environmental remediation is a major challenge, and solar-driven photothermal chemistry is a promising route to achieve this goal. Herein, this work reports a photothermal nano-constrained reactor based on hollow structured g-C3N4@ZnIn2S4 core–shell S-scheme heterojunction, where the synergistic effect of super-photothermal effect and S-scheme heterostructure significantly improve the photocatalytic performance of g-C3N4. The formation mechanism of g-C3N4@ZnIn2S4 is predicted in advance by theoretical calculations and advanced techniques, and the super-photothermal effect of g-C3N4@ZnIn2S4 and its contribution to the near-field chemical reaction is confirmed by numerical simulations and infrared thermography. Consequently, the photocatalytic degradation rate of g-C3N4@ZnIn2S4 for tetracycline hydrochloride is 99.3%, and the photocatalytic hydrogen production is up to 4075.65 µmol h−1 g−1, which are 6.94 and 30.87 times those of pure g-C3N4, respectively. The combination of S-scheme heterojunction and thermal synergism provides a promising insight for the design of an efficient photocatalytic reaction platform.
Original language | English |
---|---|
Article number | 2207499 |
Journal | Small |
Volume | 19 |
Issue number | 23 |
DOIs | |
Publication status | Published - 7 Jun 2023 |
Keywords
- S-scheme heterojunction
- full solar spectrum
- hollow core–shell structures
- photocatalysis
- photothermal effect