Summarizing the slices: Sample-based core-periphery classification on complex networks

Bo Yan, Wenli Tang, Jiamou Liu, Yiping Liu, Fanku Meng, Hongyi Su

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Core-periphery structure refers to a prevalent property exhibited by many real-world complex networks. The formulation and identification of a network core-periphery structure have been a challenging problem. A classical framework (BE) proposed by Borgatti and Everett defines a core-periphery partition of the network by aligning its nodes with a block model and has been a standard method for this task. This method, however, suffers from high computational costs which make it inapplicable to large networks. Realizing this limitation, we proposed a new framework, which aims to efficiently evaluate core-ness of nodes. Our framework builds a model for core-periphery classification by integrating small samples. The experimental results of six real-world networks shows that our methods can efficiently and effectively identify network core, achieving a running time of less than three hours for a network with about 220, 000 nodes.

Original languageEnglish
Title of host publicationProceedings - 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages212-217
Number of pages6
ISBN (Electronic)9781728152127
DOIs
Publication statusPublished - Dec 2019
Event15th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2019 - Shenzhen, China
Duration: 11 Dec 201913 Dec 2019

Publication series

NameProceedings - 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2019

Conference

Conference15th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2019
Country/TerritoryChina
CityShenzhen
Period11/12/1913/12/19

Keywords

  • Core periphery
  • Integration Strategy
  • Samples

Fingerprint

Dive into the research topics of 'Summarizing the slices: Sample-based core-periphery classification on complex networks'. Together they form a unique fingerprint.

Cite this