Study on the diagnosis method of aero-engine health status based on stacking ensemble learning

Chenhui Ren, Huajin Lei, Haiping Dong*, Xue Dong, Yuxi Tao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Effective health status diagnosis of the aero-engine not only helps improve the safety and reliability of aero-engines, but also helps engineers and maintenance workers reduce engine maintenance and support costs. Firstly, this paper proposes integrating five different base learners based on the Stacking method to diagnose the health status of the aero-engine. Then, the deep neural network (DNN) is used to learn the complex nonlinear relationship between the base learners in Stacking ensemble (SE) learning. Finally, a case study shows that the established ensemble model has higher diagnostic stability, generalization ability and strong learning ability, and proves to be effective in health status diagnosis of aero-engines.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
EditorsChuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages394-400
Number of pages7
ISBN (Electronic)9781728101996
DOIs
Publication statusPublished - Aug 2019
Event2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, China
Duration: 15 Aug 201917 Aug 2019

Publication series

NameProceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

Conference

Conference2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
Country/TerritoryChina
CityBeijing
Period15/08/1917/08/19

Keywords

  • Aero-engine
  • Deep neural network
  • Health status diagnosis
  • Stacking ensemble learning

Fingerprint

Dive into the research topics of 'Study on the diagnosis method of aero-engine health status based on stacking ensemble learning'. Together they form a unique fingerprint.

Cite this