Study on a Closed-Loop Coupling Model without Coupling Spring

Yongchang Du*, Yingping Lv, Yujian Wang, Pu Gao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Closed-loop coupling model, based on complex eigenvalue analysis, is one of the most popular and effective methods for brake squeal analysis. In the model, imaginary coupling springs are used to represent the normal contacting force between coupled nodes. Unfortunately, the physical meaning of these coupling springs was seldom discussed and there’s no systematic method to determine the value of spring stiffness. Realizing this problem, this paper, based on finite element model and modal synthesis technique, develops a new closed-loop coupling disc brake squeal model without introducing imaginary coupling springs. Different from the traditional model where two nodes at coupling interface are connected through a spring, these node-pairs in the new model are assumed to remain in tight contact during vibration. Details of the model, including force analysis, coordinate reduction and transformation and complex eigenvalue decomposition are given in this paper. Finally, the presented method is applied on the modelling of a squealing disc brake, which shows good correlation between model prediction results and those from bench test. Besides, because there are less indeterminate model parameters, the time for parameters tuning process is greatly reduced.

Original languageEnglish
Pages (from-to)227-233
Number of pages7
JournalSAE International Journal of Passenger Cars - Mechanical Systems
Volume9
Issue number1
DOIs
Publication statusPublished - 5 Apr 2016

Fingerprint

Dive into the research topics of 'Study on a Closed-Loop Coupling Model without Coupling Spring'. Together they form a unique fingerprint.

Cite this