Abstract
This paper presents analytical models, as well as numerical and experimental verification of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic analytical governing equations are created for resonator vibrating at drive-mode and sense-mode, and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified that coincided well with finite element analysis (FEM) simulation results. Also, the comparison of vibration field quantities is made to investigate the effect of different conditions on resonator thermoelastic vibration behavior. The significant parameters of thermoelastic damping and quality factor are subsequently deduced to analyze the energy dissipation situation in the vibration process. Meanwhile, the corresponding conclusions from other studies are used to verify our theoretical model and numerical results. By comparing with the experimental quality factor, the numerical values are validated. The combination of the theoretical expressions, numerical results and experimental data leads to an important insight into the achievable quality factor value of tuning-fork resonator, namely, that the thermoelastic damping is the main loss mechanism in the micro-comb finger structure and the quality factor varies under different vibration modes. The results demonstrate that the critical geometry dimensions of tuning-fork resonator can be well designed with the assistance of this study.
Original language | English |
---|---|
Article number | 1445 |
Journal | Sensors |
Volume | 16 |
Issue number | 9 |
DOIs | |
Publication status | Published - 7 Sept 2016 |
Keywords
- Drive-mode
- Gyroscope resonator
- Intrinsic dissipation
- Quality factor
- Sense-mode
- Thermoelastic damping