Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM

Junhao Zhao, Binbin Wang, Tong Liu, Liangshun Luo*, Yanan Wang, Xiaonan Zheng, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu, Dayong Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Quasicrystal (QC) phases are often observed in Al-based alloys with Al content< 85 at%, and their particle size is typically greater than 0.3 µm. In this study, an in situ formed QC phase was observed in Al-4.1Mn-0.98Mg-0.8Sc-0.5Zr alloy (Al ≈ 96 at%) when processed using Selective Laser Melting (SLM). The particle size of the QC phase processed by SLM is 55–85% smaller than when processed by other methods, which is likely due to the lower Mn concentration and higher cooling rate. Moreover, the shape of the QC phase is spherical near the bottom of the melt pool and becomes a strip in the center of melt pool with the variation of solidification conditions. At higher cooling rates, it can be inferred that the formation of QCs is promoted while the growth of QC phase is effectively inhibited. According to calculations and electron spectroscopy (EDS) results, the possible chemical composition of the QC phase is considered as Al80Cu2.83Mn17.16 (at%) with an e/a of 1.9849 and Rav of ~1.4152 Å. During aging, a portion of the QC phase could transform into Al6Mn through a peritectoid reaction. The homogeneously dispersed QC transforms the Al6Mn into a finer and more dispersed phase. Consequently, the mechanical properties are cooperatively improved both by Al6Mn and the residual QC phase. After aging, the ultimate strength is 548.67 ± 4.66 MPa with an elongation of 12.2 ± 1.09%. These results indicate that SLM expands the formation range of QC and is an ideal processing route to fabricate in situ QC-strengthened Al-based alloys.

Original languageEnglish
Article number164847
JournalJournal of Alloys and Compounds
Volume909
DOIs
Publication statusPublished - 15 Jul 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM'. Together they form a unique fingerprint.

Cite this