STSP approximation algorithms based on TCPN model

Guohun Zhu*, Kaoru Hirota, Yonghua Wu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

An approximation algorithms based on Time Color Petri Nets(TCPN) is presented to obtain an optimal solution for a general Symmetric Traveling Salesman Problem(TSP) with a conflict restriction. It is composed of building TCPN model part with complexity O(n 2); nets firing part in O(m) (≤O(n 2)) and selected by minimum change rate with a optimal solution in O(m 2 n 2)(≤O(n 6)), where n and m stand for the number of cities and the number of edges, respectively. Without conflict, an optimal solution is obtained on theory. Experimental (include several TSPLIB) results shows that the best costing is obtained optimal solution in O(n 2) and the worst approximation performance is 1.5-opt.

Original languageEnglish
Title of host publication4th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2010
Pages305-309
Number of pages5
Publication statusPublished - 2010
Externally publishedYes
Event4th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2010 - Harbin, China
Duration: 2 Aug 20108 Aug 2010

Publication series

Name4th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2010

Conference

Conference4th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2010
Country/TerritoryChina
CityHarbin
Period2/08/108/08/10

Keywords

  • Approximation algorithms
  • Firing
  • Symmetric traveling salesman problem
  • Time Color Petri Net

Fingerprint

Dive into the research topics of 'STSP approximation algorithms based on TCPN model'. Together they form a unique fingerprint.

Cite this