TY - JOUR
T1 - Structure engineering of CeO2 for boosting the Au/CeO2 nanocatalyst in the green and selective hydrogenation of nitrobenzene
AU - Ye, Junqing
AU - Jing, Meizan
AU - Liang, Yu
AU - Li, Wenjin
AU - Zhao, Wanting
AU - Huang, Jianying
AU - Lai, Yuekun
AU - Song, Weiyu
AU - Liu, Jian
AU - Sun, Jian
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/3/23
Y1 - 2023/3/23
N2 - Exploring eco-friendly and cost-effective strategies for structure engineering at the nanoscale is important for boosting heterogeneous catalysis but still under a long-standing challenge. Herein, multifunctional polyphenol tannic acid, a low-cost natural biomass containing catechol and galloyl species, was employed as a green reducing agent, chelating agent, and stabilizer to prepare Au nanoparticles, which were dispersed on different-shaped CeO2 supports (e.g., rod, flower, cube, and octahedral). Systematic characterizations revealed that Au/CeO2-rod had the highest oxygen vacancy density and Ce(iii) proportion, favoring the dispersion and stabilization of the metal active sites. Using isopropanol as a hydrogen-transfer reagent, deep insights into the structure-activity relationship of the Au/CeO2 catalysts with various morphologies of CeO2 in the catalytic nitrobenzene transfer hydrogenation reaction were gained. Notably, the catalytic performance followed the order: Au/CeO2-rod (110), (100), (111) > Au/CeO2-flower (100), (111) > Au/CeO2-cube (100) > Au/CeO2-octa (111). Au/CeO2-rod displayed the highest conversion of 100% nitrobenzene and excellent stability under optimal conditions. Moreover, DFT calculations indicated that nitrobenzene molecules had a suitable adsorption energy and better isopropanol dehydrogenation capacity on the Au/CeO2 (110) surface. A reaction pathway and the synergistic catalytic mechanism for catalytic nitrobenzene transfer hydrogenation are proposed based on the results. This work demonstrates that CeO2 structure engineering is an efficient strategy for fabricating advanced and environmentally benign materials for nitrobenzene hydrogenation.
AB - Exploring eco-friendly and cost-effective strategies for structure engineering at the nanoscale is important for boosting heterogeneous catalysis but still under a long-standing challenge. Herein, multifunctional polyphenol tannic acid, a low-cost natural biomass containing catechol and galloyl species, was employed as a green reducing agent, chelating agent, and stabilizer to prepare Au nanoparticles, which were dispersed on different-shaped CeO2 supports (e.g., rod, flower, cube, and octahedral). Systematic characterizations revealed that Au/CeO2-rod had the highest oxygen vacancy density and Ce(iii) proportion, favoring the dispersion and stabilization of the metal active sites. Using isopropanol as a hydrogen-transfer reagent, deep insights into the structure-activity relationship of the Au/CeO2 catalysts with various morphologies of CeO2 in the catalytic nitrobenzene transfer hydrogenation reaction were gained. Notably, the catalytic performance followed the order: Au/CeO2-rod (110), (100), (111) > Au/CeO2-flower (100), (111) > Au/CeO2-cube (100) > Au/CeO2-octa (111). Au/CeO2-rod displayed the highest conversion of 100% nitrobenzene and excellent stability under optimal conditions. Moreover, DFT calculations indicated that nitrobenzene molecules had a suitable adsorption energy and better isopropanol dehydrogenation capacity on the Au/CeO2 (110) surface. A reaction pathway and the synergistic catalytic mechanism for catalytic nitrobenzene transfer hydrogenation are proposed based on the results. This work demonstrates that CeO2 structure engineering is an efficient strategy for fabricating advanced and environmentally benign materials for nitrobenzene hydrogenation.
UR - http://www.scopus.com/inward/record.url?scp=85152473312&partnerID=8YFLogxK
U2 - 10.1039/d3nh00103b
DO - 10.1039/d3nh00103b
M3 - Article
C2 - 37016980
AN - SCOPUS:85152473312
SN - 2055-6756
VL - 8
SP - 812
EP - 826
JO - Nanoscale Horizons
JF - Nanoscale Horizons
IS - 6
ER -