Structural Bias for Aspect Sentiment Triplet Extraction

Chen Zhang, Lei Ren, Fang Ma, Jingang Wang*, Wei Wu, Dawei Song*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

10 Citations (Scopus)

Abstract

Structural bias has recently been exploited for aspect sentiment triplet extraction (ASTE) and led to improved performance. On the other hand, it is recognized that explicitly incorporating structural bias would have a negative impact on efficiency, whereas pretrained language models (PLMs) can already capture implicit structures. Thus, a natural question arises: Is structural bias still a necessity in the context of PLMs? To answer the question, we propose to address the efficiency issues by using an adapter to integrate structural bias in the PLM and using a cheap-to-compute relative position structure in place of the syntactic dependency structure. Benchmarking evaluation is conducted on the SemEval datasets. The results show that our proposed structural adapter is beneficial to PLMs and achieves state-of-the-art performance over a range of strong baselines, yet with a light parameter demand and low latency. Meanwhile, we give rise to the concern that the current evaluation default with data of small scale is under-confident. Consequently, we release a large-scale dataset for ASTE. The results on the new dataset hint that the structural adapter is confidently effective and efficient to a large scale. Overall, we draw the conclusion that structural bias shall still be a necessity even with PLMs.

Original languageEnglish
Pages (from-to)6736-6745
Number of pages10
JournalProceedings - International Conference on Computational Linguistics, COLING
Volume29
Issue number1
Publication statusPublished - 2022
Event29th International Conference on Computational Linguistics, COLING 2022 - Gyeongju, Korea, Republic of
Duration: 12 Oct 202217 Oct 2022

Fingerprint

Dive into the research topics of 'Structural Bias for Aspect Sentiment Triplet Extraction'. Together they form a unique fingerprint.

Cite this