TY - JOUR
T1 - Strain rate dependent deformation behavior of BCC-structured Ti29Zr24Nb23Hf24 high entropy alloy at elevated temperatures
AU - Cao, Tangqing
AU - Guo, Wenqi
AU - Lu, Wang
AU - Xue, Yunfei
AU - Lu, Wenjun
AU - Su, Jing
AU - Liebscher, Christian H.
AU - Li, Chang
AU - Dehm, Gerhard
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1/25
Y1 - 2022/1/25
N2 - The mechanical behavior and deformation mechanisms of a body-centered cubic (BCC) Ti29Zr24Nb23Hf24 (at%) high entropy alloy (HEA) was investigated in temperatures and strain rates from 700° to 1100 °C and 10−3 to 10 s−1, respectively. The HEA exhibits a substantial increase in yield stress with increasing strain rate. The strain rate sensitivity (SRS) coefficient is ~3 times that of BCC alloy Nb-1Zr and even ~3.5 times that of pure Nb. This high SRS is attributed to the high Peierls stress of the HEA, which is about twice the Peierls stress of pure Nb. On the other hand, the flow stress exhibits a tendency from strain softening to strain hardening with the increase of strain rate especially at the relatively low temperatures. This behavior is explained by a change in dislocation motion from climbing to multiple slip with the increase of strain rate. Taking the specimen subjected to 800 ºC for example, dislocation walls formed at the early stage of deformation and at low strain rate of 10−3 s−1. In this case there is sufficient time to activate dislocations climb, which results in discontinuous dynamic recrystallization, and strain softening. However, when the strain rate amounts to 1 s−1, thermally activated processes such as dislocation climb are too sluggish. As a consequence, multiple slip systems are activated, and the dislocation interactions lead to the evolution of deformation bands, leading to strain hardening.
AB - The mechanical behavior and deformation mechanisms of a body-centered cubic (BCC) Ti29Zr24Nb23Hf24 (at%) high entropy alloy (HEA) was investigated in temperatures and strain rates from 700° to 1100 °C and 10−3 to 10 s−1, respectively. The HEA exhibits a substantial increase in yield stress with increasing strain rate. The strain rate sensitivity (SRS) coefficient is ~3 times that of BCC alloy Nb-1Zr and even ~3.5 times that of pure Nb. This high SRS is attributed to the high Peierls stress of the HEA, which is about twice the Peierls stress of pure Nb. On the other hand, the flow stress exhibits a tendency from strain softening to strain hardening with the increase of strain rate especially at the relatively low temperatures. This behavior is explained by a change in dislocation motion from climbing to multiple slip with the increase of strain rate. Taking the specimen subjected to 800 ºC for example, dislocation walls formed at the early stage of deformation and at low strain rate of 10−3 s−1. In this case there is sufficient time to activate dislocations climb, which results in discontinuous dynamic recrystallization, and strain softening. However, when the strain rate amounts to 1 s−1, thermally activated processes such as dislocation climb are too sluggish. As a consequence, multiple slip systems are activated, and the dislocation interactions lead to the evolution of deformation bands, leading to strain hardening.
KW - Deformation bands
KW - Deformation mechanism
KW - High temperature
KW - High-entropy alloy
KW - Strain rate
UR - http://www.scopus.com/inward/record.url?scp=85115060605&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2021.161859
DO - 10.1016/j.jallcom.2021.161859
M3 - Article
AN - SCOPUS:85115060605
SN - 0925-8388
VL - 891
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 161859
ER -