Stochastic partial differential equations with unbounded and degenerate coefficients

Xicheng Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

In this article, using DiPerna-Lions theory (DiPerna and Lions, 1989) [1], we investigate linear second order stochastic partial differential equations with unbounded and degenerate non-smooth coefficients, and obtain several conditions for existence and uniqueness. Moreover, we also prove the L1-integrability and a general maximal principle for generalized solutions of SPDEs. As applications, we study nonlinear filtering problem and also obtain the existence and uniqueness of generalized solutions for a degenerate nonlinear SPDE.

Original languageEnglish
Pages (from-to)1924-1966
Number of pages43
JournalJournal of Differential Equations
Volume250
Issue number4
DOIs
Publication statusPublished - 15 Feb 2011
Externally publishedYes

Keywords

  • DiPerna-Lions theory
  • Maximal principle
  • Nonlinear filtering
  • Stochastic partial differential equation

Fingerprint

Dive into the research topics of 'Stochastic partial differential equations with unbounded and degenerate coefficients'. Together they form a unique fingerprint.

Cite this