TY - JOUR
T1 - Stable aluminum-lithium alloy fuels for solid propellants by facile surface modifying
AU - Le, Wei
AU - Zhao, Wanjun
AU - Zhu, Yanli
AU - Wei, Ziting
AU - Liu, Zhigang
AU - Jiao, Qingjie
AU - Liu, Dazhi
N1 - Publisher Copyright:
© 2024
PY - 2024/10/1
Y1 - 2024/10/1
N2 - As a highly reactive metal fuel, aluminum–lithium (Al-Li) alloy is an ideal candidate for replacing Al powders in solid propellants. However, the Li solid solution and AlLi compounds on the surface of Al-Li alloy powders display high reactivity, which can react with a large number of organic and inorganic reagents. Thus, the incompatibility of Al-Li alloy with other components of propellants makes it difficult to be further applied in propellants. In this study, surface-modified Al-Li alloy powders (Li content of 5 wt%) with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS17) were prepared by a facile self-assembly method, which made the alloy powders super-hydrophobic. The results of SEM, XPS and FIB-TEM show that the surface of Al-Li alloy powder is well-coated by an evenly distributed FAS17 layer. Due to the fluoroalkyl on the surface of the powders, the water contact angle increased by 91°and the intensity of the reaction between alloy powders and water is significantly reduced, which results in improved compatibility with other components of propellants. Meanwhile, the propellant grain of surface-modified powders had fewer defects than the sample before coating, and showed original excellent combustion performance. The average combustion pressure and pressurization rate increased by ∼114 kPa and ∼8613 kPa/s, and the steady burning rate increased by 0.24 mm/s. Therefore, the surface-modified Al-Li alloy powders with FAS17 are expected to be an attractive candidate as a highly active and stable fuel in solid propellants.
AB - As a highly reactive metal fuel, aluminum–lithium (Al-Li) alloy is an ideal candidate for replacing Al powders in solid propellants. However, the Li solid solution and AlLi compounds on the surface of Al-Li alloy powders display high reactivity, which can react with a large number of organic and inorganic reagents. Thus, the incompatibility of Al-Li alloy with other components of propellants makes it difficult to be further applied in propellants. In this study, surface-modified Al-Li alloy powders (Li content of 5 wt%) with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS17) were prepared by a facile self-assembly method, which made the alloy powders super-hydrophobic. The results of SEM, XPS and FIB-TEM show that the surface of Al-Li alloy powder is well-coated by an evenly distributed FAS17 layer. Due to the fluoroalkyl on the surface of the powders, the water contact angle increased by 91°and the intensity of the reaction between alloy powders and water is significantly reduced, which results in improved compatibility with other components of propellants. Meanwhile, the propellant grain of surface-modified powders had fewer defects than the sample before coating, and showed original excellent combustion performance. The average combustion pressure and pressurization rate increased by ∼114 kPa and ∼8613 kPa/s, and the steady burning rate increased by 0.24 mm/s. Therefore, the surface-modified Al-Li alloy powders with FAS17 are expected to be an attractive candidate as a highly active and stable fuel in solid propellants.
KW - Al-Li alloy powder
KW - Combustion properties
KW - In-situ assembly
KW - Solid propellants
KW - Surface modification
UR - http://www.scopus.com/inward/record.url?scp=85200389446&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.154451
DO - 10.1016/j.cej.2024.154451
M3 - Article
AN - SCOPUS:85200389446
SN - 1385-8947
VL - 497
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 154451
ER -