TY - JOUR
T1 - Stable 3D porous N-MXene/NiCo2S4 network with Ni–O atomic bridging for printed hybrid micro-supercapacitors
AU - Sun, Pengcheng
AU - Liu, Jingyuan
AU - Liu, Qi
AU - Yu, Jing
AU - Chen, Rongrong
AU - Zhu, Jiahui
AU - Sun, Gaohui
AU - Li, Ying
AU - Song, Dalei
AU - Wang, Jun
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/8/1
Y1 - 2024/8/1
N2 - The vision of “Internet of Everything” marked by wearable and multi-functional microelectronics technology has a profound impact on our lives, and the requirements for micro-supercapacitors (MSCs) are also constantly increasing. Compared to traditional super capacitors, there is still a lack of systematic investigation on regulating the morphology and internal structure of microelectrodes. Herein, we achieved the inkjet printing of intricate structures, a novel 3D N-MXene/NiCo2S4 porous network, and applied it to long-life hybrid MSCs. A new bridging mechanism of Ni atoms and O atoms is demonstrated by XPS. DFT calculations reveal that the O atoms of N-MXene can capture electrons from Ni atoms of NiCo2S4, resulting in charge redistribution in the interfacial region of 3D N-MXene/NiCo2S4, thereby realizing enhanced structural stability of the composite material. Due to the gradual release of active sites within the porous network, its capacitance retention rate can be as high as 99.1 % after 25,000 charge and discharge tests. With a wide voltage window of 1.6 V, a volumetric capacitance of 983.9 F cm−3, and an energy density of 342.4 mWh cm−3, the MSCs perform better than previously reported inkjet-printed MSCs. Our work demonstrates a new strategy to regulate the surface morphology and internal structure of the microelectrodes by high-precision inkjet printing to improve the performance of the MSCs.
AB - The vision of “Internet of Everything” marked by wearable and multi-functional microelectronics technology has a profound impact on our lives, and the requirements for micro-supercapacitors (MSCs) are also constantly increasing. Compared to traditional super capacitors, there is still a lack of systematic investigation on regulating the morphology and internal structure of microelectrodes. Herein, we achieved the inkjet printing of intricate structures, a novel 3D N-MXene/NiCo2S4 porous network, and applied it to long-life hybrid MSCs. A new bridging mechanism of Ni atoms and O atoms is demonstrated by XPS. DFT calculations reveal that the O atoms of N-MXene can capture electrons from Ni atoms of NiCo2S4, resulting in charge redistribution in the interfacial region of 3D N-MXene/NiCo2S4, thereby realizing enhanced structural stability of the composite material. Due to the gradual release of active sites within the porous network, its capacitance retention rate can be as high as 99.1 % after 25,000 charge and discharge tests. With a wide voltage window of 1.6 V, a volumetric capacitance of 983.9 F cm−3, and an energy density of 342.4 mWh cm−3, the MSCs perform better than previously reported inkjet-printed MSCs. Our work demonstrates a new strategy to regulate the surface morphology and internal structure of the microelectrodes by high-precision inkjet printing to improve the performance of the MSCs.
KW - 3D N-MXene
KW - Composite material
KW - Flexible microelectronics
KW - Inkjet printing
KW - Micro-supercapacitors
UR - http://www.scopus.com/inward/record.url?scp=85195067905&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.152731
DO - 10.1016/j.cej.2024.152731
M3 - Article
AN - SCOPUS:85195067905
SN - 1385-8947
VL - 493
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 152731
ER -