Stabilizing Polyether Electrolyte with a 4 v Metal Oxide Cathode by Nanoscale Interfacial Coating

Haowei Zhai, Tianyao Gong, Bingqing Xu, Qian Cheng, Daniel Paley, Boyu Qie, Tianwei Jin, Zhenxuan Fu, Laiyuan Tan, Yuan Hua Lin, Ce Wen Nan, Yuan Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Safety is critical to developing next-generation batteries with high-energy density. Polyether-based electrolytes, such as poly(ethylene oxide) and poly(ethylene glycol) (PEG), are attractive alternatives to the current flammable liquid organic electrolyte, since they are much more thermally stable and compatible with high-capacity lithium anode. Unfortunately, they are not stable with 4 V Li(NixMnyCo1-x-y)O2 (NMC) cathodes, hindering them from application in batteries with high-energy density. Here, we report that the compatibility between PEG electrolyte and NMC cathodes can be significantly improved by forming a 2 nm Al2O3 coating on the NMC surface. This nanoscale coating dramatically changes the composition of the cathode electrolyte interphase and thus stabilizes the PEG electrolyte with the NMC cathode. With Al2O3, the capacity remains at 84.7% after 80 cycles and 70.3% after 180 cycles. In contrast, the capacity fades to less than 50% after only 20 cycles in bare NMC electrodes. This study opens a new opportunity to develop safe electrolyte for lithium batteries with high-energy density.

Original languageEnglish
Pages (from-to)28774-28780
Number of pages7
JournalACS applied materials & interfaces
Volume11
Issue number32
DOIs
Publication statusPublished - 14 Aug 2019
Externally publishedYes

Keywords

  • NMC cathode
  • atomic layer deposition
  • battery safety
  • lithium anode
  • poly(ethylene oxide)
  • polymer electrolyte
  • thermal runaway

Fingerprint

Dive into the research topics of 'Stabilizing Polyether Electrolyte with a 4 v Metal Oxide Cathode by Nanoscale Interfacial Coating'. Together they form a unique fingerprint.

Cite this