Stabilizing lagrange-type nonlinear programming neural networks

Yuancan Huang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Inspired by the Lagrangian multiplier method with quadratic penalty function, which is widely used in Nonlinear Programming Theory, a Lagrange-type nonlinear programming neural network whose equilibria coincide with KKT pairs of the underlying nonlinear programming problem was devised with minor modification in regard to handling inequality constraints[1, 2]. Of course, the structure of neural network must be elaborately conceived so that it is asymptotically stable. Normally this aim is not easy to be achieved even for the simple nonlinear programming problems. However, if the penalty parameters in these neural networks are taken as control variables and a control law is found to stabilize it, we may reasonably conjecture that the categories of solvable nonlinear programming problems will be greatly increased. In this paper, the conditions stabilizing the Lagrange-type neural network are presented and control-Lyapunov function approach is used to synthesize the adjusting laws of penalty parameters.

Original languageEnglish
Title of host publicationAdvances in Neural Networks - ISNN 2007 - 4th International Symposium on Neural Networks, ISNN 2007, Proceedings
PublisherSpringer Verlag
Pages320-329
Number of pages10
EditionPART 3
ISBN (Print)9783540723943
DOIs
Publication statusPublished - 2007
Event4th International Symposium on Neural Networks, ISNN 2007 - Nanjing, China
Duration: 3 Jun 20077 Jun 2007

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume4493 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference4th International Symposium on Neural Networks, ISNN 2007
Country/TerritoryChina
CityNanjing
Period3/06/077/06/07

Fingerprint

Dive into the research topics of 'Stabilizing lagrange-type nonlinear programming neural networks'. Together they form a unique fingerprint.

Cite this