Abstract
Despite great progress in nitric oxide (NO) controlled releasing strategies, the in vivo spatiotemporal NO distribution of arteries is still unclear, which makes it impossible to assess the status of arteries and render NO-based therapies in vivo largely fruitless. Here, we presented personalized computational modelling to calculate the NO distribution on the endothelial surface and in the arterial wall of human atherosclerotic carotid artery bifurcations using models constructed from MRI. The computational results indicated the distribution of NO in the atherosclerotic artery is highly uneven. The volume-weighted average NO concentration (CV) in regions with lipid plaques (9.76 ± 2.82 nM) was about 22 times higher than that in the plaque-free regions. Regions where also the calcified plaque components and the intraplaque hemorrhages are present would increase and abate the CV, respectively. The dynamic blood flow during the cycle would directly affect the distribution of NO on the endothelial surface. The luminal NO distribution is closely related to hemodynamic indicators, including wall shear stress (WSS), time averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residence time (RRT). In conclusion, atherosclerotic components determine the space-averaged NO concentration in arterial wall and blood flow controls the luminal NO concentration.
Original language | English |
---|---|
Article number | 104015 |
Journal | Computers in Biology and Medicine |
Volume | 125 |
DOIs | |
Publication status | Published - Oct 2020 |
Externally published | Yes |
Keywords
- Atherosclerosis
- Hemodynamics
- Nitric oxide
- Numerical simulation
- Phase contrast MRI