TY - JOUR
T1 - Somatosensory Electro-Thermal Actuator through the Laser-Induced Graphene Technology
AU - Wang, Hao
AU - Li, Xuyang
AU - Wang, Xiaoyue
AU - Qin, Yong
AU - Pan, Yang
AU - Guo, Xiaogang
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023
Y1 - 2023
N2 - The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.
AB - The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.
KW - laser-induced graphene (LIG)
KW - soft robotics
KW - the electro-thermal actuators
KW - the self-sensing actuator
UR - http://www.scopus.com/inward/record.url?scp=85179330838&partnerID=8YFLogxK
U2 - 10.1002/smll.202310612
DO - 10.1002/smll.202310612
M3 - Article
AN - SCOPUS:85179330838
SN - 1613-6810
JO - Small
JF - Small
ER -