Solution-Processed Diketopyrrolopyrrole-Containing Small-Molecule Organic Solar Cells with 7.0% Efficiency: In-Depth Investigation on the Effects of Structure Modification and Solvent Vapor Annealing

Jin Liang Wang*, Zhuo Wu, Jing Sheng Miao, Kai Kai Liu, Zheng Feng Chang, Ru Bo Zhang, Hong Bin Wu, Yong Cao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

108 Citations (Scopus)

Abstract

A family of narrow band gap extended conjugated D2-A2-D1-A1-D1-A2-D2 type small molecules based on diketopyrrolopyrrole derivatives as the stronger acceptor core (A1) coupled with indacenodithiophene (IDT; D1) and difluorobenzothiadiazole (A2) are synthesized, and their properties as donor materials in solution-processed small-molecule organic solar cells are investigated. The impacts of replacing the thiophene ring by a more electron-deficient thiazole ring and inserting thiophene spacer between electron-donating (D1) and electron-accepting (A1 and A2) aromatic moieties on bulk properties, such as the photophysical properties, the HOMO/LUMO energy level, charge carrier mobilities, and the morphologies of blend films, as well as optimization on device performance via solvent vapor annealing are investigated. NDPPFBT shows outstanding efficiencies up to 7.00% after THF vapor annealing for 60 s because of a very high fill factor (FF) of 0.73 and high Voc of 0.89 V. The reported efficiency is among one of the highest values for small-molecules-based organic solar cells from an electron-accepting unit as core and appears as the first diketopyrrolopyrrole-based small-molecule bulk-heterojunction organic solar cells with PCE over 7% with high FF and Voc.

Original languageEnglish
Pages (from-to)4338-4348
Number of pages11
JournalChemistry of Materials
Volume27
Issue number12
DOIs
Publication statusPublished - 23 Jun 2015

Fingerprint

Dive into the research topics of 'Solution-Processed Diketopyrrolopyrrole-Containing Small-Molecule Organic Solar Cells with 7.0% Efficiency: In-Depth Investigation on the Effects of Structure Modification and Solvent Vapor Annealing'. Together they form a unique fingerprint.

Cite this