Abstract
Increasing demand for fresh water in extreme drought regions necessitates potable water reuse. However, current membrane-based water reclamation approaches cannot effectively remove carcinogenic 1,4-dioxane. The current study reports on the solar-driven removal of 1,4-dioxane (50 mg L−1) using a homemade WO3/nγ-Al2 O3 nano-catalyst. Characterization methods including scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) analyses are used to investigate the surface features of the catalyst. The 1,4-dioxane mineralization performance of this catalyst under various reaction conditions is studied. The effect of the catalyst dosage is tested. The mean oxidation state carbon (MOSC) values of the 1,4-dioxane solution are followed during the reaction. The short chain organic acids after treatment are measured. The results showed that over 75% total organic carbon (TOC) removal was achieved in the presence of 300 mg L−1 of the catalyst with a simulated solar irradiation intensity of 40 mW cm−2. Increasing the dose of the catalyst from 100 to 700 mg L−1 can improve the treatment efficiency to some extent. The TOC reduction curve fits well with an apparent zero-order kinetic model and the corresponding constant rates are within 0.0927 and 0.1059 mg L−1 s−1, respectively. The MOSC values of the 1,4-dioxane solution increase from 1.3 to 3 along the reaction, which is associated with the formation of some short chain acids. The catalyst can be effectively reused 7 times. This work provides an oxidant-free and energy saving approach to achieve efficient removal of 1,4-dioxane and thus shows promising potential for potable reuse applications.
Original language | English |
---|---|
Article number | 389 |
Journal | Catalysts |
Volume | 9 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2019 |
Externally published | Yes |
Keywords
- 1,4-dioxane
- Photocatalysis
- Potable reuse
- Solar radiation
- WO/nγ-Al O
- Water treatment