Sodium lignosulphonate decomposing accumulated byproducts of quasi-solid aluminum-air batteries

Songmao Zhang, Yichun Wang*, Yawen Li, Manhui Wei, Keliang Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Quasi-solid Al-air batteries with hydrogels are regarded as a promising power source because of their high specific capacity, small-scale bulk, high ionic conductivity and no leakage. However, increasing accumulations of byproducts on the interface between Al anode and solid-state electrolyte block discharging performance and lifespan of the batteries. Here, we firstly present a way of sodium lignosulphonate as a chelating agent for Al-air batteries, forming coordination compounds and decomposing discharging byproducts, where the coordination compounds can make aluminum ions transfer from anodic surface into the interior of hydrogel electrolyte. Compared to Al-air batteries without additive sodium lignosulphonate, the lifespan of the battery with sodium lignosulphonate can be prolonged by 124.6% at a current density of 1 mA cm−2. Additionally, the battery can output high power density of 46.3 mW cm−2 at 56 mA cm−2, and the maximum specific battery capacity of 2161.67 mA h g−1 is achieved at 20 mA cm−2. The use of coordination compounds to decompose and migrate discharging byproducts is not only available for Al-air batteries but for other metal batteries.

Original languageEnglish
Article number232088
JournalJournal of Power Sources
Volume549
DOIs
Publication statusPublished - 30 Nov 2022

Keywords

  • Coordination compounds
  • Discharging byproducts
  • Hydrogels
  • Quasi solid Al-Air batteries
  • Sodium lignosulphonate

Fingerprint

Dive into the research topics of 'Sodium lignosulphonate decomposing accumulated byproducts of quasi-solid aluminum-air batteries'. Together they form a unique fingerprint.

Cite this