Abstract
Singlet oxygen (1O2) is widely regarded as the main cytotoxic substance that induces the biological damage for photodynamic therapy (PDT). In this study, the previously developed near-infrared (NIR) optical imaging system was optimized for fast imaging of 1O2 luminescence. The optical imaging system enables direct imaging of 1O2 luminescence in blood vessels within 2 s during vascular-targeted PDT (V-PDT), which makes this system extremely practical for in vivo studies. The dependence of RB concentration on 1O2 luminescence image was investigated for V-PDT, and the data imply that 1270 nm signal is attributed to 1O2 luminescence. The imaging system operates with a field of view of 9.60 × 7.68 mm2 and a spatial resolution of 30 μm, which holds the potential to elucidate the correlation between cumulative 1O2 luminescence and vasoconstriction for V-PDT.
Original language | English |
---|---|
Pages (from-to) | 646-651 |
Number of pages | 6 |
Journal | Photochemistry and Photobiology |
Volume | 96 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 May 2020 |
Externally published | Yes |