TY - JOUR
T1 - SID-Net
T2 - single image dehazing network using adversarial and contrastive learning
AU - Yi, Weichao
AU - Dong, Liquan
AU - Liu, Ming
AU - Hui, Mei
AU - Kong, Lingqin
AU - Zhao, Yuejin
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - Image dehazing is a fundamental low-level vision task and has gained increasing attention in the computer community. Most existing learning-based methods achieve haze removal by designing different convolutional neural networks. However, these algorithms only consider clean images as optimization targets and fail to utilize negative information from hazy images, which leads to a sub-optimal dehazing performance. Towards this issue, we propose a novel single image dehazing network (SID-Net), and it consists of three core branches: Image Dehazing Branch (IDB), Adversarial Guidance Branch (AGB) and Contrastive Enhancement Branch (CEB). Specifically, IDB achieves an initial hazy-clean translation based on the encoder-decoder framework and enhances its feature representation ability by introducing an Attentive Recurrent Module (ARM) and Attention Fusion Operation (AFO), respectively. Next, AGB takes full advantage of positive information from clean ground truth by an adversarial learning strategy and guides the restored image to be closer to the haze-free domain. Finally, CEB is proposed to exploit the negative information of hazy images and further improve its dehazing performance via a contrastive learning strategy. Extensive experiments on both synthetic and real-world datasets demonstrate that our SID-Net can obtain comparable results with other state-of-the-art algorithms. Code is available at https://github.com/leandepk/SID-Net-for-image-dehazing.
AB - Image dehazing is a fundamental low-level vision task and has gained increasing attention in the computer community. Most existing learning-based methods achieve haze removal by designing different convolutional neural networks. However, these algorithms only consider clean images as optimization targets and fail to utilize negative information from hazy images, which leads to a sub-optimal dehazing performance. Towards this issue, we propose a novel single image dehazing network (SID-Net), and it consists of three core branches: Image Dehazing Branch (IDB), Adversarial Guidance Branch (AGB) and Contrastive Enhancement Branch (CEB). Specifically, IDB achieves an initial hazy-clean translation based on the encoder-decoder framework and enhances its feature representation ability by introducing an Attentive Recurrent Module (ARM) and Attention Fusion Operation (AFO), respectively. Next, AGB takes full advantage of positive information from clean ground truth by an adversarial learning strategy and guides the restored image to be closer to the haze-free domain. Finally, CEB is proposed to exploit the negative information of hazy images and further improve its dehazing performance via a contrastive learning strategy. Extensive experiments on both synthetic and real-world datasets demonstrate that our SID-Net can obtain comparable results with other state-of-the-art algorithms. Code is available at https://github.com/leandepk/SID-Net-for-image-dehazing.
KW - Adversarial learning
KW - Contrastive learning
KW - Convolutional neural networks
KW - Image dehazing
UR - http://www.scopus.com/inward/record.url?scp=85184419792&partnerID=8YFLogxK
U2 - 10.1007/s11042-024-18502-7
DO - 10.1007/s11042-024-18502-7
M3 - Article
AN - SCOPUS:85184419792
SN - 1380-7501
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
ER -