Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition

Yilin Zhou, Jianzhou Wang*, Haiyan Lu, Weigang Zhao

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    39 Citations (Scopus)

    Abstract

    Short-term wind power prediction has a considerable effect on improving the productivity of wind energy systems and increasing economic benefits. In recently years, various wind velocity predictive models have been designed to raise the prediction effect. However, numerous predictive systems are limited by single type, and many ordinary predictive systems ignore the advantage of optimized parameters and the significance of data preparation, which bring about the lower predictive precision. To fill this gap, in this article, a novel predictive system is come up, which is on the basis of data denoising strategy, statistical predictive systems, artificial intelligence forecasting system and multi-objective optimization strategy. After using the data denoising strategy for denoising, the reconstructed data is used for the forecasting of different sub-systems, to obtain stable forecasting results, multi-objective dragonfly algorithm is used to estimate the weight coefficient of sub-systems. To evaluate the availability of the designed predictive system, five wind velocity datasets from different wind farms are used for the purpose of a case research. According four experiments and four analyses, it can be concluded that the designed combined system has a well predictive effect in short-term wind speed prediction. And it is in favor of grid regulation and operation.

    Original languageEnglish
    Article number111982
    JournalChaos, Solitons and Fractals
    Volume157
    DOIs
    Publication statusPublished - Apr 2022

    Keywords

    • Hybrid models
    • Multi-objective dragonfly algorithm
    • Variational mode decomposition
    • Wind speed prediction

    Fingerprint

    Dive into the research topics of 'Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition'. Together they form a unique fingerprint.

    Cite this